8 research outputs found

    Unraveling the Relationship between Co-Authorship and Research Interest

    Get PDF
    Co-authorship in scientific research is increasing in the past decades. There are lots of researches focusing on the pattern of co-authorship by using social network analysis. However, most of them merely concentrated on the properties of graphs or networks rather than take the contribution of authors to publications and the semantic information of publications into consideration. In this paper, we employ a contribution index to weight word vectors generated from publications so as to represent authors’ research interest, and try to explore the relationship between research interest and co-authorship. Result of curve estimation indicates that research interest couldn’t be employed to predict co-authorship. Therefore, graph-based researcher recommendation needs further examination

    Human ISL1+ ventricular progenitors self-assemble into an in vivo functional heart patch and preserve cardiac function post infarction

    Get PDF
    The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm x 3 mm x 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy.ERC AdG743225Swedish Research Council Distinguished Professor Grant Dnr 541-2013-8351The Knut and Alice Wallenberg Foundation (KAW Dnr 2013.0028)Horizon 2020 research and innovation programme grant agreement No 647714Publishe

    Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation

    No full text
    Abstract Background Motor neurons control muscle contraction by initiating action potentials in muscle. Denervation of muscle from motor neurons leads to muscle atrophy, which is linked to mitochondrial dysfunction. It is known that denervation promotes mitochondrial reactive oxygen species (ROS) production in muscle, whereas the initial cause of mitochondrial ROS production in denervated muscle remains elusive. Since denervation isolates muscle from motor neurons and deprives it from any electric stimulation, no action potentials are initiated, and therefore, no physiological Ca2+ transients are generated inside denervated muscle fibers. We tested whether loss of physiological Ca2+ transients is an initial cause leading to mitochondrial dysfunction in denervated skeletal muscle. Methods A transgenic mouse model expressing a mitochondrial targeted biosensor (mt-cpYFP) allowed a real-time measurement of the ROS-related mitochondrial metabolic function following denervation, termed “mitoflash.” Using live cell imaging, electrophysiological, pharmacological, and biochemical studies, we examined a potential molecular mechanism that initiates ROS-related mitochondrial dysfunction following denervation. Results We found that muscle fibers showed a fourfold increase in mitoflash activity 24 h after denervation. The denervation-induced mitoflash activity was likely associated with an increased activity of mitochondrial permeability transition pore (mPTP), as the mitoflash activity was attenuated by application of cyclosporine A. Electrical stimulation rapidly reduced mitoflash activity in both sham and denervated muscle fibers. We further demonstrated that the Ca2+ level inside mitochondria follows the time course of the cytosolic Ca2+ transient and that inhibition of mitochondrial Ca2+ uptake by Ru360 blocks the effect of electric stimulation on mitoflash activity. Conclusions The loss of cytosolic Ca2+ transients due to denervation results in the downstream absence of mitochondrial Ca2+ uptake. Our studies suggest that this could be an initial trigger for enhanced mPTP-related mitochondrial ROS generation in skeletal muscle

    Additional file 5: Figure S2. of Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation

    No full text
    The pure mitochondria and cytosol fractions do not show contamination from each other. The COX-IV antibody only detects bands in pure mitochondrial fraction, not in cytosol fraction, while the GAPDH antibody only detects bands in the cytosol fraction. (PDF 174 kb

    Additional file 1: Figure S1. of Absence of physiological Ca2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation

    No full text
    Live cell imaging shows the mitochondrial targeting of mt-cpYFP in skeletal muscle of the transgenic mice (cpYFP). mt-cpYFP targeted well to mitochondria in skeletal muscle of the transgenic mice cpYFP. The representative images of FDB muscle fibers enzyme-isolated from the transgenic mouse cpYFP were incubated with 50 nM TMRE for 10 min. A. Muscle fibers expressing mt-cpYFP. B. TMRE marked mitochondria of the same muscle fibers in A. C. Overlay of A and B indicates the targeting of mt-cpYFP to mitochondria. (PDF 304 kb

    Human ISL1+ ventricular progenitors self-assemble into an in vivo functional heart patch and preserve cardiac function post infarction

    No full text
    The generation of human pluripotent stem cell (hPSC)-derived ventricular progenitors and their assembly into a 3-dimensional in vivo functional ventricular heart patch has remained an elusive goal. Herein, we report the generation of an enriched pool of hPSC-derived ventricular progenitors (HVPs), which can expand, differentiate, self-assemble, and mature into a functional ventricular patch in vivo without the aid of any gel or matrix. We documented a specific temporal window, in which the HVPs will engraft in vivo. On day 6 of differentiation, HVPs were enriched by depleting cells positive for pluripotency marker TRA-1-60 with magnetic-activated cell sorting (MACS), and 3 million sorted cells were sub-capsularly transplanted onto kidneys of NSG mice where, after 2 months, they formed a 7 mm Ă— 3 mm Ă— 4 mm myocardial patch resembling the ventricular wall. The graft acquired several features of maturation: expression of ventricular marker (MLC2v), desmosomes, appearance of T-tubule-like structures, and electrophysiological action potential signature consistent with maturation, all this in a non-cardiac environment. We further demonstrated that HVPs transplanted into un-injured hearts of NSG mice remain viable for up to 8 months. Moreover, transplantation of 2 million HVPs largely preserved myocardial contractile function following myocardial infarction. Taken together, our study reaffirms the promising idea of using progenitor cells for regenerative therapy
    corecore